Heterogeneous photocatalytic oxidation of acetone for airpurification by near UV-irradiated titanium dioxide.

نویسندگان

  • Chiu-Ping Chang
  • Jong-Nan Chen
  • Ming-Chun Lu
چکیده

This work presents a photocatalysis-based method to treat and purify air because of its broad applicability to common, oxidizable air contaminants. The effect of oxygen content, temperature, water vapor, and acetone concentration on the photooxidation of acetone on TiO2 surface was investigated. The photocatalytic decomposition reaction of acetone obeyed the first-order equation. The decomposition rate increased with increasing the oxygen content. The rate of acetone oxidation increased when water vapor increased from 18.7 to 417 microM and decreased at higher than 417 microM. The conversion and mineralization of acetone decreased at higher than 138 degrees C. The initial rate of acetone degradation can be well described by the Langmuir-Hinshelwood rate form. The specific reaction rate constant and the equilibrium adsorption are 15.8 microM/min and 0.0671 L/microM, respectively. The difference between observed and estimated half-lives became larger when the initial concentration of acetone was increased. It is assumed that the intermediates competed with parent compound so that delayed the half-life. The detection of CO2 production can support this assumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light intensity dependence of the kinetics of the photocatalytic oxidation of nitrogen(II) oxide at the surface of TiO2.

Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is their light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material which uses titanium dioxide as the photocatalyst. Herein, res...

متن کامل

Photocatalytic Oxidation of Pollutant Dyes in Wastewater by TiO2 and ZnO nano-materials – A Mini-review

In recent years, photocatalytico oxidation processes with ultra violet (UV) radiation and semiconductor photocatalyst like titanium dioxide (TiO2) and zinc oxide (ZnO) have gained immense research interest as an effective wastewater purification method because of its efficacy in decomposing and mineralising the hazardous organic pollutants as well as the opportunity of utilizing the solar UV an...

متن کامل

A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.

Titanium dioxide (TiO2) displays photocatalytic behavior under near-ultraviolet (UV) illumination. In another scientific field, it is well understood that the excitation of localized plasmon polaritons on the surface of silver (Ag) nanoparticles (NPs) causes a tremendous increase of the near-field amplitude at well-defined wavelengths in the near UV. The exact resonance wavelength depends on th...

متن کامل

Titanium dioxide/zeolite catalytic adsorbent for the removal of NO and acetone vapors.

This study delineates a simple and versatile approach for the removal of nitrogen monoxide (NO) and volatile organic vapors over composites of titanium dioxide (TiO2) catalyst/zeolite adsorbent under ultraviolet (UV) irradiation at ambient temperature. The catalytic adsorbents with different TiO2/H-ZSM-5 zeolite ratios were prepared by a simple insipient wetness impregnation method. It was foun...

متن کامل

Photocatalytic Oxidation of Low-Level Airborne 2-Propanol and Trichloroethylene over Titania Irradiated with Bulb-Type Light-Emitting Diodes

This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE) and 2-propanol, at indoor levels, over titanium dioxide (TiO₂) irradiated with light-emitting diodes (LED) under different operational conditions. TiO₂ powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE) for TCE, while all photocatalysts baked at different temperatures sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering

دوره 38 6  شماره 

صفحات  -

تاریخ انتشار 2003